organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. M. Govind,^a S. Selvanayagam,^a D. Velmurugan,^a* K. Ravikumar,^b Gowri Sridhar^c and R. Raghunathan^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.053 wR factor = 0.148 Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5"-Benzylidene-1'-methyl-4'-phenylindole-3-spiro-2'-pyrrolidine-3'-spiro-3"-piperidine-2(3*H*),4"-dione

In the title compound, $C_{30}H_{29}N_3O_2$, the dihedral angle between the rings in the indole moiety is 3.3 (1)°. The piperidinone ring adopts a half-chair conformation. The dihedral angle between the pyrrolidine ring and the oxindole moiety is 77.2 (1)°. The packing is stabilized by an N-H···O hydrogen bond and intermolecular C-H···N interactions.

Comment

The spiro ring system containing an indole and a pyrrolidine ring is present in many biologically important and pharmacologically relevant alkaloids (Cordel, 1981). Pyrrolidine compounds are found to be antimicrobial and antifungal (Amal Raj *et al.*, 2003). As a result of the medicinal importance of the compound and also as a continuation of our studies, the X-ray analysis of the title compound, (I), was carried out and the results are presented here.

Fig. 1 shows a displacement ellipsoid diagram of the molecule with the atomic numbering scheme. Selected geometric

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

View of (I) (50% probability displacement ellipsoids).

Received 20 October 2003 Accepted 27 October 2003 Online 8 November 2003 parameters are given in Table 1. The bond lengths in the pyrrolidine moiety are slightly greater than the values reported for similar structures (Jeyabharathi *et al.*, 2001; Seshadri *et al.*, 2003). This may be due to steric forces caused by the bulky substituents on the pyrrolidine moiety. The sum of the angles at atom N10 of the pyrrolidine moiety (339.2°) is in accordance with sp^3 hybridization (Beddoes *et al.*, 1986). The sum of angles at N21 (334.6°) of the piperidinone ring reveal it to be sp^3 hybridized.

Atom O32 is essentially coplanar with the heterocyclic ring to which it is attached, with a deviation of 0.098 (1) Å.

The phenyl ring is attached to the pyrrolidine ring in an equatorial position. The indole moiety (atoms C2–C9/N1) is planar, the dihedral angle between the planes of the heterocyclic and benzene rings being $3.3 (1)^{\circ}$.

The asymmetry parameters (Nardelli, 1995) $q_2 = 0.322 (2) \text{ Å}$, $\varphi = -167.5 (4)^{\circ}$ and $\Delta C_2[\text{C13}-\text{C8}] = 0.0594 (1)^{\circ}$ reveal the conformation of the pyrrolidine ring to be half-chair. The piperidinone ring also adopts a half-chair conformation. This is confirmed by the asymmetry parameters $q_2 = 0.085 (2) \text{ Å}$, $\varphi = 47.7 (1)^{\circ}$, $\Delta C_2 [\text{C20}] = 0.0494 (7)^{\circ}$ and $\Delta_s[\text{C23}] = 0.0459 (5)^{\circ}$.

The molecular structure is influenced by $C-H\cdots O$ intramolecular interactions. In the crystal structure, N1– H1 \cdots O32ⁱ hydrogen bonds link inversion-related molecules to form dimers (Fig. 2 and Table 2). The crystal structure is also stabilized by $C-H\cdots N$ intermolecular interactions. In addition, symmetry-related molecules are also linked by weak $C-H\cdots \pi$ intermolecular interactions, such that atom H3 is 2.68 Å from the centroid of the phenyl ring (C14–C19) at (x - 1, y, z), with a C3–H3 \cdots centroid angle of 131° and a C3 \cdots centroid distance of 3.359 (2) Å.

Experimental

A mixture of dipolarophile (dibenzylidine-*N*-methylpiperidone), isatin and sarcosine was refluxed in aqueous methanol until the starting materials had disappeared (about 3–4 h), as evidenced by thin-layer chromatography. When the reaction was complete, the solvent was removed *in vacuo* and the residue was chromatographed on silica gel using a hexane–ethyl acetate mixture as eluant and recrystallized from methanol to give (I).

Crystal data

	2
$C_{30}H_{29}N_{3}O_{2}$	$D_x = 1.222 \text{ Mg m}^{-3}$
$M_r = 463.56$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 2146
$a = 10.6889 (7) \text{\AA}$	reflections
b = 18.9025 (12) Å	$\theta = 2.4–20.4^{\circ}$
c = 12.5270 (8) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 95.283(1)^{\circ}$	T = 293 (2) K
V = 2520.3 (3) Å ³	Block, colourless
Z = 4	$0.21 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-	3798 reflections with $I > 2\sigma(I)$
detector diffractometer	$R_{\rm int} = 0.031$
ω scans	$\theta_{\rm max} = 28.0^{\circ}$
Absorption correction: none	$h = -14 \rightarrow 13$
15 727 measured reflections	$k = -21 \rightarrow 24$
5738 independent reflections	$l = -13 \rightarrow 16$

Figure 2

Packing diagram, with hydrogen bonds shown as dashed lines.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $vR(F^2) = 0.148$ S = 0.99	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0826P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma) < 0.001$
738 reflections 816 parameters	$\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

N10-C11	1.453 (2)	N10-C33	1.463 (2)
C9-N1-C2 C11-N10-C33	111.7 (1) 116.2 (2)	C11-N10-C8 C33-N10-C8	107.4 (1) 115.6 (1)
C11-C12-C14-C19	27.2 (2)		

Table 2			
Hydrogen-bonding geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C12-H12···O35	0.98	2.33	2.804 (2)	109
C20−H20B···O32	0.97	2.35	2.898 (2)	115
C25-H25···O35	0.93	2.41	2.770 (2)	103
$N1 - H1 \cdots O32^i$	0.86	2.06	2.883 (2)	159
C28−H28···N10 ⁱⁱ	0.93	2.61	3.520 (3)	168

Symmetry codes: (i) 1 - x, -y, -z; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93-0.98 Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ for methyl H atoms and $1.2U_{\rm eq}({\rm C})$ for other H atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ZORTEP* (Zsolnai, 1997) and *PLATON* (Spek, 1990); software used to prepare material for publication: *SHELXL*97 and *PARST* (Nardelli, 1995).

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University With Potential For Excellence Programme.

References

Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I.-F. (1986). J. Chem. Soc. Perkin. Trans. 2, pp. 787–797.

- Bruker (2001). *SAINT* (Version 6.28a) and *SMART* (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cordel, G. (1981). Oxindole Alkaloids, Alkaloid Chemistry and Physiology, edited by R. H. F. Manke. New York: Academic Press.
- Jeyabharathi, A., Ponnusamy, M. N., Amalraj, R., Raghunathan, R., Razak, I. A., Usman, A., Chandrapromma, S. & Fun, H.-K. (2001). Acta Cryst. E57, 0901–0903.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E**59**, o1458–o1460.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46. C-34.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.